Heat Capacity Changes of Alkyl-substituted Ammonium Chlorides in Aqueous Solutions

Kunio Тамакі, Satoru Yoshikawa, and Mitsuyoshi Kushida Department of Chemistry, Yokohama City University, Kanazawa-ku, Yokohama 236 (Received January 21, 1975)

The changes in the heat capacity for the dissolution in water, ΔC_p° , of *n*-alkylammonium chlorides (methyl to hexyl), di-*n*-alkylammonium chlorides (methyl to butyl), and tri-*n*-alkylammonium chlorides (methyl to propyl) at the room temperature were determined from measurements of the relation between the heats of solution of these salts in water and the temperature, and the results were compared with the ΔC_p° values for tetraalkylammonium salts in the literature. It was found that the effect of the coordination of the charge-bearing nitrogen atom by alkyl groups was definitely reflected in the ΔC_p° values. In the cases of MeNH₃Cl, EtNH₃Cl, Me₂NH₂Cl, and Me₃NHCl, the ΔC_p° values are negative, while in the cases of other higher homologues, the ΔC_p° values are positive; the increments in the ΔC_p° values per methylene group are discussed in terms of the hydrophobic hydration and the steric effect of alkyl chains.

Recently, studies of the behavior of electrolytes with attached nonpolar groups, particularly of tetraalkylammonium salts, R₄NX, have been extensively carried out by various experimental methods. 1-5) Measurements of the heat capacities of aqueous electrolytes solutions produce useful information about the influences of ions on the structure of solvent water.6) The changes in the heat capacities for the dissolution in water of simple salts indicate negative values, whereas the changes in the heat capacities for the dissolution in water of nonpolar solutes indicate positive values. This characteristic relation has been applied to the study of R₄NX salts in water, and the behavior of R₄NX salts has been discussed in terms of the modification of the water structure around the nonpolar parts. 6-12) To elucidate the role of the alkyl groups on the coordination of the chargebearing nitrogen atom, it seems of great interest to study the behavior of incompletely alkylated ammonium salts in water.

In this paper, we will report our experimental results on the changes in the heat capacity for the dissolution in water of n-alkylammonium chlorides RNH₃Cl (methyl to hexyl), di-n-alkylammonium chlorides R₂NH₂Cl (methyl to butyl), and tri-n-alkylammonium chlorides R₃NHCl (methyl to propyl); we will discuss the results in terms of the balance of two types of hydration-namely, electrostrictive hydration due to the ionic part and hydrophobic hydration due to the nonpolar part.

The change in the heat capacity for the dissolution at infinite dilution, $\Delta C_{\rm p}^{\circ}$, may be obtained from the relation between the heat of solution at infinite dilution, $\Delta H_{\rm s}^{\circ}$, and the temperature, T:13)

$$d\Delta H_{\rm s}^{\,\circ}/dT = \Delta C_{\rm p}^{\,\circ} = \overline{C}_{\rm p}^{\,\circ} - C_{\rm p} \tag{1}$$

where $\bar{C}_{\rm p}{}^{\rm o}$ is the partial molal heat capacity of the solute at infinite dilution, and $C_{\rm p}$ the heat capacity of the pure salt.

Experimental

NH₄Cl was a commercial sample of a G. R. grade. The other organic chemicals were obtained from Tokyo Kasei Kogyo Co. RNH₃Cl salts were the same samples as have been described elsewhere.¹⁴⁾ Pr₂NH₂Cl, Bu₂NH₂Cl, and Pr₃NHCl were prepared by the neutralization of the respective amines with gaseous hydrogen chloride in benzene. All

the organic salts were recrystallized from suitable solvents: ethanol for Me₂NH₂Cl, Et₂NH₂Cl, Pr₂NH₂Cl, and Me₃NHCl; ethyl acetate for Pr₃NHCl; and ethanol-ethyl acetate mixtures for Bu₂NH₂Cl and Et₃NHCl. Water was redistilled from an alkaline permanganate solution.

The heats of solution were measured by means of a twin conduction microcalorimeter (Model CM-204D1 of Öyodenki Kenkyujo) described in a previous paper. The uncertainties of the heat-of-solution data obtained in this work were estimated to be within 0.03 kcal/mol at 10—25 °C and 0.05 kcal/mol at 30—45 °C. The concentration of the measured solution was 0.01 M, and the heat of dilution from a solution at 0.01 M to one at a large dilution is about $-0.03\sim-0.04$ kcal/mol for NH₄Cl, MeNH₃Cl, Me₂NH₂Cl, and Me₃NHCl. In view of this situation, the mean values of the heats of solution repeatedly measured at 0.01 M are presented in this paper. The ΔC_p ° values are obtained by assuming that the change in the heat capacity at 0.01 M is equal to that at infinite dilution. 15)

Results

The heats of solution obtained for three homologous series of RNH₃Cl, R₂NH₂Cl, and R₃NHCl are listed in Table 1. The ΔH_s° values at 25 °C reported by Krishnan and Friedman¹⁷⁾ for RNH₃Cl salts, Me₂NH₂-Cl, Bu₂NH₂Cl, and Me₃NHCl are also included in Table 1. Except for Bu₂NH₂Cl, the heats of solution obtained in this work at 25 °C are in fairly good agreement with those reported by Krishnan and Friendman.¹⁷⁾ Taking account of the experimental uncertainties described above, the heats of solution can be regarded as approximately a linear function of the temperature over the range studied. The approximate linear relation between the heat of solution and the temperature in the range of room temperature has sometimes been reported.¹⁰⁾ The mean $\Delta C_{\rm p}^{\circ}$ values in the range of measurements are obtained from the average slope of the linear plots of the heats of solution against the temperature: the results are listed in Table 2. For comparison, the ΔC_p° values at room temperature reported for R₄NBr salts in the literature^{7,10)} are also included in Table 2. As will be explained below, the difference in $\Delta C_{\rm p}{}^{\circ}$ values due to the variation in halide ions for the same cation is very small. Therefore, the ΔC_p° values of R₄NBr salts may well be

Table 1. Heat of solution

	RNH₃Cl			
R	10 °C kcal/mol	25 °C kcal/mol	40 °C kcal/mol	45 °C kcal/mol
Н	4.01	3.54		2.90
Me	1.80	1.42		0.97
		1.42 ^{a)}		
Et	2.15	2.05	2.00	1.94
		2.08^{a}		
Pr	0.24	0.38	0.56	0.60
_		0.33^{a}		
Bu	-0.96	-0.64	-0.31	
_		-0.64^{a}		
Pen	-0.76	-0.20	0.34	_
		-0.23^{a}		
Hex	-0.50	0.31	1.16	
		0.28^{a}		

	R_2NH_2Cl			
R	10°C kcal/mol	15 °C kcal/mol	25 °C kcal/mol	35 °C kcal/mol
Me	0.69		0.48	0.34
			0.47^{a}	
Et	_	0.17	0.38	0.57
Pr	-2.55		-1.80	-1.28
Bu	-2.61		-1.43	-0.65
			-1.61^{a}	

	R ₃ NHCl			
R	10 °C kcal/mol	25 °C kcal/mol	30 °C kcal/mol	35 °C kcal/mol
Me	1.01	0.85 0.83 ^a)	0.80	
Et	0.68	1.04		1.29
\mathbf{Pr}	-2.66	-1.51		-0.76

a) Ref. 17

used in place of R₄NCl salts for the purpose of considering the effect of alkyl chains on the behavior of alkyl-substituted ammonium salts in water.

Discussion

The $\Delta \bar{C}_p^{\circ}$ Value as the Ion-solvent Interaction Parameter. The \bar{C}_p° value is of thermodynamical importance for the study of electrolyte solutions. The \bar{C}_p° value can be obtained by the measurement of the heat capacities of solutions at dilute concentrations. There have been reports about the \bar{C}_p° values for methyl- and ethylammonium chlorides by Rüterjans, Schreiner, Sage, and Ackermann, of a series of n-alkylammonium bromide-by Leduc, Fortier, and Desnoyers. On and for some dinalkylammonium chlorides by Cobani, Conti, Martinelli, and Matteoli. Alternatively, if the C_p value is known, the \bar{C}_p° value can be obtained by adding the C_p and ΔC_p° values by means of Eq. (1). Furthermore, it is assumed that the \bar{C}_p° value consists of two contributions; the first is the intrinsic heat capacity of the ions in the absence of ion-solvent interactions, while the second is the contribution arising from the influence which the

Table 2. Change in heart capacity for dissolution $(\varDelta C_{\rm p}{}^{\circ})$ and increase in $\varDelta C_{\rm p}{}^{\circ}$ per methylene group $(\varDelta C_{\rm p}{}^{\circ}/\!\!-\!\!{\rm ch_9-})$

R	⊿0 cal/K	Gp° Cmol	$\Delta C_{ m p}^{ m o}/{ m -CH_2-}$ cal/K mol	
		RNH ₃ C	21	
Н	-32		0	
Me	-24		8	
Et	-6		18	
Pr	10		16	
Bu	22		12	
Pen	37		15	
Hex	55		18	
		R_2NH_2O	CI	
Me	-14		17	
Et	20		17	
Pr	51		15.5	
Bu	78		13.5	
		R_3NHC	1	
Me	-11		10	
Et	24		12	
\mathbf{Pr}	76		17	
		R_4NBr		
Me	-11.3ª)	-10.1^{b}	10.00	10 0h
Et	30 ^{a)}	33 ^{b)}	10.3 ^{a)}	10.8b
Pr	106 ^{a)}	112.5 ^{b)}	19 ^{a)}	20 ^{b)}
Bu	176 ^{a)}	179 ^{b)}	15 ^{a)}	17 ^{b)}

ions exert on the solvent structure:11)

$$\bar{C}_{p}^{\circ} = \bar{C}_{p}^{\circ}(int) + \bar{C}_{p}^{\circ}(solv)$$
 (2)

Thus, in order to discuss the interaction of ion with solvent using the data of the $\bar{C}_{\rm p}{}^{\circ}$ value, we must obtain the $\bar{C}_{\rm p}{}^{\circ}$ (solv) value by substracting the appropriate value of the $\bar{C}_{\rm p}{}^{\circ}$ (int) value from the $\bar{C}_{\rm p}{}^{\circ}$ value. For the $\bar{C}_{\rm p}{}^{\circ}$ (int) value, Visser and Somsen^{11,12}) adopted the hypothetical liquid state of the salt. On the other hand, Leduc, Fortier, and Desnoyers²⁰⁾ assumed two limiting cases for the $\bar{C}_{\rm p}{}^{\circ}$ (int) value; one is as the liquid state, and the other is as the solid crystalline.

If we regard $\bar{C}_p^{\circ}(\text{int})$ as the capacity of the solid crystalline, ΔC_p° in Eq. (1) corresponds to $\bar{C}_p^{\circ}(\text{solv})$ in Eq. (2). In other words, the ΔC_p° value is a measure of ion-solvent interactions if the standard state of the salt is taken as the solid state.

A variety of simple salts show negative $\bar{C}_p^{\,\circ}$ values in water, which may be interpreted in terms of electrostrictive hydration.²²⁾ For example, the $\bar{C}_p^{\,\circ}$ values for NaCl, NaBr, and NaI are -22.1, -23.3, and -23.4 cal/K mol at 25 °C respectively.²³⁾ If we use 11.9, 12.5, and 13.0 cal/K mol for the corresponding C_p values at 25 °C in the literature,²⁴⁾ the $\Delta C_p^{\,\circ}$ values become -34.0, -35.8, and -36.4 cal/K mol respectively. Likewise we can conclude that the $\Delta C_p^{\,\circ}$ values for other alkali halides do not vary greatly with the different halide ions, such as Cl⁻, Br⁻, and I⁻ ions. On the other hand, the $\Delta C_p^{\,\circ}$ values for organic solutes with nonpolar groups, such as alkyl alcohol,²⁵⁾ alkane carboxylic acids,²⁶⁾ and alkylamines,²⁶⁾ are all positive, which may be interpreted in terms of the promotion of the water structure around the nonpolar groups in water (hydrophobic hydration).

RNH₃Cl Salts. NH₄Cl is a typical simple salt, the $\Delta C_{\rm p}^{\circ}$ value being as low as -32 cal/K mol, as may be seen in Table 2. In a previous study of viscosity B coefficients,14) we proposed that the -NH3+ ionic part is an electrostrictive structure-breaker. Table 2 indicates the negative ΔC_p° values for MeNH₃Cl and EtNH₃Cl. Leduc, Fortier, and Desnoyers²⁰⁾ showed that the \bar{C}_{p}° — $\bar{C}_{p}^{\circ}(int)$ values for MeNH₃Br and EtNH₃Br are negative, whether the $\bar{C}_{p}^{\circ}(int)$ value is taken as a liquid or a solid state. Therefore, it may be concluded that the electrostrictive hydration due to the charge-bearing nitrogen atom may interfere with the interaction of hydrophobic methyl or ethyl groups with water in RNH₃Cl salts. In the cases of PrNH₃Cl and higher homologues, the ΔC_p° values become positive, and they increase with an increase in the chain length. They are classifiable as hydrophobic structure-making solutes. The average increment in the ΔC_p° values per methylene group from MeNH₃Cl to higher homologues is about 16 cal/K mol; this value corresponds approximately to the value in the series of nonelectrolytes such as alcohol.25)

Previous studies of the viscosity B coefficient¹⁴) and the surface activity²⁷) seem to indicate that EtNH₃Cl may be classified as a weak hydrophobic structure-making solute. Although it is difficult to draw any definite conclusions, the ambiguity in the behavior of this salt in water is probably attributable to the fact that EtNH₃Cl is a borderline solute.

 R_2NH_2Cl Salts. As may be seen in Table 2, the ΔC_p° value for $\mathrm{Me_2NH_2Cl}$ is negative, but the value is less negative than that of $\mathrm{MeNH_3Cl}$, showing the cooperative hydrophobic effect of the two methyl groups. In the cases of $\mathrm{Et_2NH_2Cl}$, $\mathrm{Pr_2NH_2Cl}$, and $\mathrm{Bu_2NH_2Cl}$, the ΔC_p° values become positive, and they are hydrophobic structure-makers. The increments in the ΔC_p° values per methylene group from $\mathrm{Me_2NH_2Cl}$ to $\mathrm{Bu_2NH_2Cl}$ are about 15 cal/K mol, suggesting that the two alkyl chains can interact independently with water in $\mathrm{R_2NH_2Cl}$ series.

The $\Delta C_{\mathbf{p}}^{\circ}$ values for R_3NHCl and R_4NBr Salts. Me₃NHCl and Me₄NBr are about −11 cal/K mol, only slightly less negative than that of Me₂NH₂Cl. Although the ΔC_p° values for ethyl salts and higher homologues are positive in R₃NHCl and R₄NBr salts, the increments in the ΔC_p° values per methylene group from methyl salt to ethyl salt are 10-12 cal/K mol; the values are smaller than the average value of 16 cal/K mol in a series of straight-chain solutes. These facts suggest that methyl and ethyl groups cannot freely interact with water due to the steric configuration in both series. However, judging from the increments in the $\varDelta C_{\rm p}{}^{\circ}$ values per methylene group from Et₃NHCl to Pr₃NHCl salts and from Et₄NBr to Bu₄NBr salts, the methylene groups of the C-3 position and the longer parts of the alkyl chains attached to the charge-bearing nitrogen atom are free from the steric effect on the interaction with water in

both series.

In conclusion, all the methyl salts of the four types of alkyl-substituted ammonium salts in water are predominantly governed by electrostrictive hydration. $EtNH_3Cl$ is probably a borderline solute. The other salts studied are hydrophobic structure-makers, but the effect of alkyl groups on the hydrophobic hydration is slightly weakenened as a result of the steric configuration in R_3NHCl and R_4NX series.

References

- 1) S. Saito, Hyomen, 4, 584 (1968).
- 2) M. J. Blandamer, Quart. Rev., 24, 169 (1970).
- 3) W-Y. Wen, "Water and Aqueous Solutions, Structure, Thermodynamics, and Transport Processes," ed. by R. A. Horne, Wiley-Interscience, New York, N. Y. (1972), p. 613.
 - 4) W-Y. Wen, J. Solution Chem., 2, 253 (1973).
- 5) T. S. Sarma and J. C. Ahluwalia, Chem. Soc. Rev., 2, 203 (1973).
- 6) H. S. Frank and W-Y. Wen, Discuss. Faraday Soc., 24, 133 (1957).
- 7) T. S. Sarma, R. K. Mohanty, and J. C. Ahluwalia, Trans. Faraday Soc., 65, 2333 (1969).
- 8) T. S. Sarma and J. C. Ahluwalia, ibid., 67, 2528 (1971).
- 9) R. K. Mohanty and J. C. Ahluwalia, J. Chem. Thermodyn., 4, 53 (1972).
- 10) E. M. Arnett and J. J. Campion, J. Amer. Chem. Soc., 92, 7097 (1970).
- 11) C. de Visser and G. Somsen, J. Chem. Thermodyn., 5, 147 (1973).
- 12) C. de Visser and G. Somsen, J. Chem. Soc. Faraday 1, **69**, 1440 (1973).
- 13) C. M. Criss and J. W. Cobble, J. Amer. Chem. Soc., 83, 3223 (1961).
- 14) K. Tamaki, Y. Ōhara, H. Kurachi, M. Akiyama, and H. Odaki, This Bulletin, 47, 384 (1974).
- 15) K. Tamaki, Y. Isomura, and Y. Ōhara, *ibid.*, **45**, 2939 (1972).
- 16) H. Streeck, Z. Phsik. Chem., A 169, 103 (1934).
- 17) C. V. Krishnan and H. L. Friedman, J. Phys. Chem., 74, 3900 (1970).
- 18) K. S. Pitzer and L. Brewer, "Thermodynamics," McGraw-Hill, New York, N. Y. (1961), p. 373.
- 19) H. Rüterjans, F. Schreiner, U. Sage, and Th. Ackermann, J. Phys. Chem., 73, 986 (1969).
- 20) P-A. Leduc, J-L. Fortier, and J. E. Desnoyers, *ibid.*, **78**, 1217 (1974).
- 21) S. Cabani, G. Conti, A. Martinelli, and E. Matteoli, J. Chem. Soc., Faraday 1, 69, 2112 (1973).
- 22) J. T. Edsall and J. Wyman, "Biophysical Chemistry," Vol. 1, Academic Press, New York, N. Y. (1958), p. 173.
- 23) Ref. (18), p. 652.
- 24) Landolt-Börnstein, "Zahlenwerte und Funktionen," 2 Band, 4 Teil, Springer-Verlag (1961), p. 201.
- 25) E. M. Arnett, W. B. Kover, and J. V. Carter, *J. Amer. Chem. Soc.*, **91**, 4028 (1969).
- 26) J. Konicek and I. Wadsö, Acta Chem. Scand., 25, 1541 (1971).
- 27) K. Tamaki, Colloid Polymer Sci., 252, 547 (1974).